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Dynamically-available protocols tolerate large-scale 
correlated (benign) failures in blockchains networks
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This means protocols that:

● Have a known list of participants
● But, can tolerate participants unpredictably going offline at any time (and even 

99% of them)
● Also tolerate malicious (Byzantine) failures

Dynamically-available protocols are deployed in e.g. the Ethereum and Cardano 
blockchains



● Ethereum promotes the use of diverse software 
implementations to avoid correlated failures

● But, in May 2023, a bug affected two 
implementations (Prysm+Teku) and roughly 60% of 
the participants went offline for 25 minutes

● The system kept working and applications were not 
affected

● Traditional BFT consensus uses fixed-sized 
quorums and would get stuck if > ⅓ crash
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Consensus implementations on Ethereum

Source: https://clientdiversity.org/#distribution

Example in the wild: software bug in Ethereum



The sleepy model* captures key aspects of dynamic 
availability

● Participants are known but, each round, 
some may be offline

● Synchronous, reliable network
○ Message delay < 1 round

● Each round, less than a fraction β of the 
online participants are malicious

○ Adversary is constant or growing
● In practice, Ethereum uses real-time 

intervals of 12 seconds
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Example with β=1/2

*Rafael Pass and Elaine Shi. "The sleepy model of consensus." Advances in Cryptology–ASIACRYPT 2017
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Drawback: the safety of dynamically-available protocols 
depends on synchrony
● All safety guarantees are lost if the network is not synchronous

○ Dynamically-available protocols use relative thresholds
○ Intersection arguments depend on messages from all well-behaved participants being reliably 

received by all
● In general, this is expected: eventually-synchronous, dynamically available 

consensus is impossible
See Theorem 7.2 in: Lewis-Pye Roughgarden, Permissionless Consensus. arXiv preprint arXiv:2304.14701
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Contribution: methodology to modify existing protocols to 
survive bounded periods of unreliable communication

Poor solution: slow down the protocol

● Use an extremely conservative round 
duration, e.g. not 12 seconds but 1 minute

● This slows down the protocol proportionally 
to the increase in round duration

E.g. 12 seconds to 1 minute: 5x slowdown

This paper

● Keep round duration the same to maintain 
performance

● Accept that, in rounds occurring during 
asynchronous periods, message delivery may 
be fully adversarial

● Modify existing protocols to keep them safe 
during asynchronous rounds
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The sleepy model with an asynchronous period

synchronous
 round rₐ

asynchronous
 round rₐ+1

synchronous
 round rₐ+3

asynchronous
 round rₐ+2
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● We assume a single asynchronous period spanning rounds [rₐ+1,rₐ+π]
● Message delivery in asynchronous rounds is fully under adversarial control

Examples with π=2:



Goal: Asynchrony-resilient Total-Order Broadcast
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Asynchrony-resilience conditions

During asynchrony ([rₐ+1,rₐ+π])

● Delivered logs may conflict
● Processes that were online in rₐ do not 

revert any log delivered before rₐ
● No progress guarantees

After asynchrony (rₐ+π+1 and after)

● Newly delivered logs extend the logs 
delivered before rₐ

● Newly delivered logs never conflict
● Progress guarantees resume

Total order broadcast

Processes add blocks to a growing sequence 
called a log. They deliver growing logs

Safety: for every two delivered logs, one is a 
prefix of the other

Liveness: if all processes get a block b as input, 
then (with non-zero probability) eventually a log 
containing b is delivered



Example: ⅓-resilient total-order broadcast with the MMR protocol

Key observation: processes vote for logs and take 
action based only on votes cast in the previous round

In some sense, votes “expire” after one round

1: time (2k+1)Δ:
2: receive votes sent at time 2kΔ
3: vote for maximal log with > ⅔ support
4: propose extension of a maximal log with  > 
⅓ support

5: time (2k+2)Δ:
6: receive votes sent at time (2k+1)Δ
7: deliver maximal log with > ⅔ support
8: vote for a proposal* extending a maximal 
log with > ⅓ support

*a probabilistic scheme ensures that all well-behaved processes 
extend the same “good” log with probability 1/3
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We make MMR asynchrony-resilient using a 
vote-expiration period of η≥1 rounds

Protocol modifications

● We change how processes count votes
● For each process, we count the latest vote it 

cast no later than η rounds ago
○ i.e. votes expire only after η rounds
○ In vanilla MMR we have η=1

● The protocol otherwise remains unchanged

If η>π, we achieve asynchrony-resilience

Older votes prevent reverting logs delivered before 
asynchrony (assuming limited adversarial growth) 

Possible disagreement on new blocks added during 
asynchrony, but

Normal protocol operation resumes after 
asynchrony (if enough processes stick around)
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There’s a catch: the expiration period reduce resilience during 
synchrony

Drop-off rate γ: fraction of the well-behaved processes that were 
online during the expiration period and are no longer online

Resilience decreases with the drop-off rate: above the line, safety 
violations are possible

With a drop-off rate > ⅓, we lose adversarial resilience

Intuitively: the adversary can use stale messages to its advantage, 
and so we must count stale messages as adversarial
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If the drop-off rate cannot exceed ⅓ even during 
synchrony, have we not lost dynamic availability?

Not really! If the drop-off rate exceeds ⅓ then

● We are still safe if there is adversarial behavior
● We lose safety under adversarial behavior but:

○ Older votes prevent reverting logs delivered 
before the drop-off event

○ The protocol recovers after the expiration period
○ Safety-sensitive applications can choose to wait 

out the expiration period
● We temporarily lose progress guarantees
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Asynchrony-resilient MMR achieves a new tradeoff

Dynamically-available consensus

Tolerates arbitrarily fluctuating 
participation (even 99%)

Only safe under synchrony
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Partially-synchronous consensus

A fixed number of processors 
must remain available (e.g. 2f+1)

Safe during asynchrony

Asynchrony-resilient MMR

Live under arbitrarily fluctuating 
participation

Delivered prefixes are safe for η 
asynchronous rounds

During synchrony, full safety only 
under bounded drop-offs or no 
adversarial behavior

The protocol recovers safety and 
liveness after η “good” rounds



Conjecture: the methodology applies to most existing 
dynamically-available protocols

Including:

● Momose and Ren. Constant Latency in Sleepy Consensus. CCS 2022.
● Malkhi, Momose, and Ren. Towards Practical Sleepy BFT. CCS 2023.
● Losa and Gafni. Brief Announcement: Byzantine Consensus Under Dynamic 

Participation with a Well-Behaved Majority. DISC 2023
● D’Amato and Zanolini. Streamlining Sleepy Consensus: Total-Order Broadcast with 

Single-Vote Decisions in the Sleepy Model. Arxiv:2310.11331
● D’Amato and Zanolini. Recent Latest Message Driven GHOST: Balancing Dynamic 

Availability With Asynchrony Resilience. arXiv:2302.11326
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